LETTERS TO THE EDITOR

Complex Formation Between Sulfur-Containing Dinaphthylmethanes and Pd and Nd Salts

D. V. Tarasenko, O. S. Serkova, I. I. Levina, O. A. Begmyradova, and V. I. Maslennikova

Moscow State Pedagogical University, Nesvizhskii per. 3, Moscow, 119021 Russia e-mail: him-vim@mail.ru

Received April 30, 2015

Keywords: sulfur-containing dinaphthylmethane, complexation, Pd and Nd salts

DOI: 10.1134/S1070363215100357

Compounds having in the molecule several aromatic rings functionalized with sulfur-containing groups are widely used as ligands in the metal complex catalysis [1–3]. Their ligand ability depends on the nature, number and mutual orientation of electron-donor fragments attached to an aromatic scaffold.

We have previously prepared new di- and tetradentate ligands 1–4 whose molecules contained thiocarbamoyl (1, 2), carbamoylthiol (3), and mercapto (4) groups immobilized at dinaphthylmethane scaffold [4, 5] (Scheme 1).

This paper presents the first data on the interaction of sulfur-containing dinaphthylmethanes 1–4 with heavy metals salts like PdCl₂ and Nd(NO₃)₃·6H₂O.

The complex formation was carried out in acetone at a ligand-to-metal ratio of 1:1.5 (1, 3, 4) and 1:3 (2). The reaction mixture was maintained at room temperature varying the processing time from 6 to 28 days depending on the ligand and the complexing agent.

Reactions of 2,2'-di(thiocarbamoyl)-2,2'-di(carbamoyltiol)- and 2,2'-dimercaptodinaphthylmethanes 1,

Scheme 2. $\begin{array}{c|c} NMe_2 \\ O-C=S \end{array}$ $\begin{array}{c|c} Nd(NO_3)_3(H_2O)_4 \\ NMe_2 \end{array}$ $\begin{array}{c|c} Scheme 2. \end{array}$

 $X = OC(S)NMe_2(6), SC(O)NMe_2(7), SH(8).$

Scheme 3.

 $M = PdCl_2(9), Nd(NO_3)_3(H_2O)_4(10).$

3, and **4**, in whose molecules the electron-donor group are closely-spaced, resulted in the formation of chelate complexes **5–8** with a ligand-to-metal ratio of 1 : 1 (Scheme 2).

2,2',7,7'-Tetra(thiocarbamoyl)dinaphthylmethane 2 containing closely (at positions 2,2') and widely (at positions 7,7') spaced thiocarbamoyl group formed dimeric complexes 9 and 10, where dinaphthylmethane ligands were coordinated with the metal through 7,7'-thiocarbamate groups (Scheme 3).

Elemental analysis of the complexes **5–10** corresponded to their general formulas. The MALDI spectra of compounds **5–8** contained the peaks of molecular ions. In the IR spectra of the compounds obtained there were shifting and change in intensity of the absorption bands of C=S [1216, 1136 cm⁻¹ (**5**), 1116 cm⁻¹ (**6**), 1215, 1135 cm⁻¹ (**9**), 1214, 1136 cm⁻¹ (**10**)] and C=O groups [1662, 1601 cm⁻¹ (**7**)] in comparison with the starting ligands [4, 5]. In addition, absorption bands in the region of 1453–1470 cm⁻¹ characteristic of inorganic nitrate ions were observed in the spectra of complexes **6–8**, and **10**. The NMR spectral data of complexes **5–10** were similar to those of the free ligands **1–4** [4, 5].

Complex 5. To a solution of 2,2'-di(thiocarbamoyl)dinaphthylmethane 1 (0.112 mmol) in acetone (12 mL) was added PdCl₂ (0.155 mmol). The reaction mixture was kept at 22-25°C for 25 days. After removing 8 mL of acetone to the residue was added 10 mL of hexane. The precipitate was filtered off, washed with hexane (5 mL) and dried at 20°C within 8 h (1 mmHg). Yield 20%, brown powder, mp 288-290°C. IR spectrum, v, cm⁻¹: 1574, 1510, 1401, 1275, 1216, 1136, 1049, 989, 923, 854, 811, 747, 608, 529. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 22.17 s (6H, NCH₃), 3.05 s (6H, NCH₃), 4.61 s (2H, CH₂), 7.05 d (2H, H³, ³J 8.7 Hz), 7.53 m (4H, H^7 , H^6), 7.78 d (2H, H^4 , 3J 8.7 Hz), 7.94 d $(2H, H^8, {}^3J 7.8 Hz), 8.2 d (2H, H^5, {}^3J 8.2 Hz).$ NMR spectrum (DMSO- d_6), δ_C , ppm: 24.75, 37.5, 42.92, 123.6, 124.41, 125.83, 126.67, 127.94, 128.63, 129.13, 132.31, 132.96, 150.03, 185.63. Mass spectrum, m/z: 651 $[M]^+$. Found, %: C 49.26; H 3.98; N 4.45. C₂₇H₂₆Cl₂N₂O₂PdS₂. Calculated, %: C 49.74; H 4.02; N 4.30.

Complex 8 was synthesized similarly from 0.094 mmol of 2,2'-dimercaptodinaphthylmethane 4 and 0.1 mmol of Nd(NO₃)₃·6H₂O; reaction time 6 days. Yield 50%, yellow powder, mp 126–130°C. IR spectrum, v, cm⁻¹: 3206, 1628, 1471, 1263, 1022, 799,

732, 554, 536, 505. 1 H NMR spectrum (CDCl₃), δ , ppm: 4.87 br.s (2H, SH), 5.76 s (2H, CH₂), 7.42 d (2H, H³, 3 J 8.6 Hz), 7.51 d.d (2H, H⁷, 3 J 7.3, 7.6 Hz), 7.62 d.d (2H, H⁶, 3 J 7.3, 8.3 Hz), 7.69 d (2H, H⁴, 3 J 8.6 Hz), 7.85 d (2H, H⁸, 3 J 8.1 Hz), 8.41 d (2H, H⁵, 3 J 8.7 Hz). 13 C NMR spectrum (CDCl₃), δ _C, ppm: 29.17, 122.74, 125.28, 126.38, 126.62, 126.88, 128.60, 132.38, 133.24, 133.43, 135.19. Mass spectrum, m/z: 659 [M] $^{+}$. Found, %: C 38.03; H 2.87; N 5.87. $C_{21}H_{16}N_{3}O_{9}NdS_{2}$. Calculated, %: C 38.06; H 2.43; N 6.34.

Complex 9 was synthesized similarly from 0.013 mmol of 2,2'7,7'-tetra(thiocarbamoyl)dinaphthylmethane 2 and 0.389 mmol of PdCl₂; reaction time 8 days. Yield 26%, brown powder, mp 330-334°C. IR spectrum, v, cm⁻¹: 2923, 2853, 1579, 1511, 1458, 1401, 1358, 1273, 1214, 1136, 1058, 841. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 2.33 s (6H, NCH₃), 3.12 s (6H, NCH₃), 3.37 s (6H, NCH₃), 3.45 s (6H, NCH₃), 4.46 br.s (2H, CH₂), 7.11 br.s (2H, H³), 7.31 br.s (2H, H^6), 7.86 br.s (4H, H^4 , H^5), 7.97 br.s (2H, H^8). ¹³C NMR spectrum (DMSO- d_6), δ_C , ppm: 24.96, 37.87, 39.05, 42.94, 43.38, 116.47, 122.23, 123.34, 127.21, 127.69, 129.44, 130.17, 133.88, 150.40, 152.48, 186.10, 187.60. Mass spectrum, m/z: 907 [M^+ – 2Cl]. Found, %: C 38.03; H 3.11; N 4.96. C₃₃H₃₆Cl₄N₄O₄· Pd₂S₄. Calculated, %: C 38.27; H 3.50; N 5.41.

¹H and ¹³C NMR spectra were recorded on a Jeol ECX-400 spectrometer operating at 400 and 100.5 MHz, respectively, internal reference TMS. Mass spectra

(MALDI-TOF) were obtained on a Bruker Ultraflex TOF/TOF mass spectrometer (Bruker Daltonics GmbH) using 1,8,9-trihydroxyanthracene as a matrix. Elemental analysis was performed on a CHN analyzer Thermo Flash EA112. IR spectra were recorded on a Nicolet 380 Thermo instrument in reflection mode in the range of 4000–500 cm⁻¹ using ZnSe glass.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (grant no. 15-03-03345a).

REFERENCES

- Pellissier, H., *Tetrahedron*, 2007, vol. 63, p. 1297. DOI: 10.1016/j.tet.2006.09.068.
- Bayo'n, J.C., Claver, C., and Masdeu-Bulto, A.M., *Coord. Chem. Rev.*, 1999, vols. 193–195, p. 73. DOI: 10.1016/S0010-8545(99)00169-1.
- Masdeu-Bulto, A.M., Dieguez, M., Martin, E., and Gomez, M., Coord. Chem. Rev., 2003, vol. 242, p. 159. DOI: 10.1016/S0010-8545(03)00106-1.
- Maslennikova, V.I., Serkova, O.S., Shelenkova, L.V., Vasyanina, L.K., Tarasenko, D.V., and Nifantiev, E.E., *Tetrahedron Lett.*, 2012, vol. 53, p. 886. DOI: 10.1016/ j.tetlet.2011.12.034.
- Serkova, O.S., Tarasenko, D.V., Vasyanina, L.K., Begmyradova, O.A., Maslennikova, V.I., and Nifant'ev, E.E., *Russ. J. Org. Chem.*, 2014, vol. 50, p. 494. DOI: 10.1134/S1070428014040083.